题目内容
【题目】已知椭圆的两个焦点,与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线,分别交椭圆于,两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
【答案】(1);(2)证明见;解析;定点;(3).
【解析】
(1)根据直线与圆相切得圆心到直线距离等于半径列一个方程,再根据等边三角形性质得,解方程组得 ,即得结果;
(2)先设直线方程,与椭圆方程联立分别解得M,N坐标,再求斜率(注意讨论),利用点斜式得直线方程,即得定点坐标;
(3)利用韦达定理以及弦长公式得,再根据三角形面积公式得面积的函数关系式,最后根据基本不等式求最大值.
(1)由题意可得:,,
椭圆的方程为:.
(2)由题意知,设:,.
由消去得:,
解得:或(舍去),,
,同理可得:.
i:当时,直线斜率存在,
,
,直线过定点.
ii:当时,直线斜率不存在,直线方程为:,也过定点,
综上所述:直线过定点.
(3)设,由(2)知:
,
令,在单调递减,
∴当时,.
【题目】自贡农科所实地考察,研究发现某贫困村适合种植,两种药材,可以通过种植这两种药材脱贫.通过大量考察研究得到如下统计数据:药材的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:
编号 | 1 | 2 | 3 | 4 | 5 |
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
单价(元/公斤) | 18 | 20 | 23 | 25 | 29 |
药材的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:
(1)若药材的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材的单价;
(2)用上述频率分布直方图估计药材的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材还是药材?并说明理由.
参考公式:,(回归方程中)
【题目】《最强大脑》是江苏卫视引进德国节目《Super Brain》而推出的大型科学竞技真人秀节目,节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,分以上才有机会入围,某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各名,然后对这名学生进行脑力测试,规定:分数不小于分为“入围学生”,分数小于分为“未入围学生”,已知男生入围人,女生未入围人,
(1)根据题意,填写下面的列联表,并根据列联表判断是否有以上的把握认为脑力测试后是否为“入围学生”与性别有关.
性别 | 入围人数 | 未入围人数 | 总计 |
男生 | 24 | ||
女生 | 80 | ||
总计 |
(2)用分层抽样的方法从“入围学生”中随机抽取名学生.
(ⅰ)求这名学生中女生的人数;
(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这名学生中女生测试分数的平均分的最小值.
附:,其中
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |