题目内容
【题目】已知函数是定义在R上的奇函数,
(1)求实数的值;
(2)如果对任意,不等式恒成立,求实数的取值范围.
【答案】(1)1(2)
【解析】
(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)在R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.
解:(1)方法1:因为是定义在R上的奇函数,
所以,即,
即,即
方法2:因为是定义在R上的奇函数,所以,即,
即,检验符合要求.
(2),
任取,则 ,
因为,所以,所以,
所以函数在R上是增函数.
注:此处交代单调性即可,可不证明
因为,且是奇函数
所以,
因为在R上单调递增,所以,
即对任意都成立,
由于=,其中,
所以,即最小值为3
所以,
即,解得,
故,即.
【题目】某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表经计算,则下列选项正确的是( )
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
附表
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
A. 有99.5%的把握认为使用智能手机对学习有影响
B. 有99.5%的把握认为使用智能手机对学习无影响
C. 有99.9%的把握认为使用智能手机对学习有影响
D. 有99.9%的把握认为使用智能手机对学习无影响
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.