题目内容
【题目】有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为( )
A. B. C. D.
【答案】C
【解析】分析:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的四张卡片为2张1和2张2;④取出四张卡片中有3个重复数字,则重复数字为1,分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得结论.
详解:根据题意,分四种情况讨论:
①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;
此时有种顺序,可以排出24个四位数.
②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2,
若重复的数字为1,在2,3,4中取出2个,有种取法,安排在四个位置中,
有种情况,剩余位置安排数字1,可以排出个四位数
同理,若重复的数字为2,也可以排出36个重复数字;
③若取出的四张卡片为2张1和2张2,在4个位置安排两个1,有种情况,
剩余位置安排两个2,则可以排出个四位数;
④取出四张卡片中有3个重复数字,则重复数字为1,在2,3,4中取出1个卡片,
有种取法,安排在四个位置中,有种情况,剩余位置安排1,
可以排出个四位数,则一共有个四位数,故选C.
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?
(参考公式: ,其中)