题目内容

已知函数,若f(x)在x=1处的切线方程为3x+y-6=0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若对任意的,都有f(x)成立,求函数g(t)的最值
答:①;②t=最小值,t=3最大值10。

试题分析:答:①,………2分
………4分
②列表如下:







2

 
+
0
-
0
+
 





 


4
f(x)=2   8分
对任意的都有f(x)成立,
f(x)="2"    10分
g(t)(),
t=最小值,t=3最大值10   12分
点评:中档题,此类问题较为典型,是导数应用的基本问题。在某区间,导函数值非负,函数为增函数,导函数值非正,函数为减函数。求最值应遵循“求导数,求驻点,计算极值及端点函数值,比较确定最值”。不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决。本题利用“表解法”,清晰、直观、易懂。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网