题目内容
7.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.(1)求a1及{an}的通项公式;
(2)令b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn.
分析 (1)当n=1时,即得a1=1;当n≥2时,由递推关系得(an+an-1)(an-an-1-2)=0,从而可得结论;
(2)b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$=$(-1)^{n-1}\frac{4n}{(2n-1)(2n+1)}$=(-1)n-1($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),对n分奇偶数讨论即可.
解答 解:(1)当n=1时,$4{S}_{1}=({a}_{1}+1)^{2}$,则a1=1;
当n≥2时,由4Sn=(an+1)2,知4Sn-1=(an-1+1)2,
联立两式,得4an=(an+1)2-(an-1+1)2,
化简得(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1-2=0,
即{an}是以a1=1为首项,2为公差的等差数列,
故an=2n-1;
(2)b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$=$(-1)^{n-1}\frac{4n}{(2n-1)(2n+1)}$=(-1)n-1($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),
下面对n分奇偶数讨论:
当n为偶数时,Tn=(1+$\frac{1}{3}$)-($\frac{1}{3}$+$\frac{1}{5}$)+…+($\frac{1}{2n-3}$+$\frac{1}{2n-1}$)-($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)
=$1-\frac{1}{2n+1}$=$\frac{2n}{2n+1}$,
当n为奇数时,Tn=(1+$\frac{1}{3}$)-($\frac{1}{3}$+$\frac{1}{5}$)+…-($\frac{1}{2n-3}$+$\frac{1}{2n-1}$)+($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)
=$1+\frac{1}{2n+1}$=$\frac{2n+2}{2n+1}$,
所以Tn=$\left\{\begin{array}{l}{\frac{2n+2}{2n+1},}&{n为奇数}\\{\frac{2n}{2n+1},}&{n为偶数}\end{array}\right.$.
点评 本题考查求数列的通项公式及前n项和,分类讨论的思想,属于中档题.
A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | 4$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
A. | 2+i | B. | 2-i | C. | -2+i | D. | -2-i |
A. | (0,+∞) | B. | [1,+∞) | C. | (-∞,0) | D. | (-∞,-1] |