题目内容
14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M关于直线y=x+1的对称点在圆x2+y2=1上,求m的值.
分析 (1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出.
(2)设A(x1,y1),B(x2,y2),M(x3,y3),M关于直线y=x+1的对称点为V(x4,y4).与椭圆方程联立化为3x2+4mx+2m2-8=0.△>0.可得x3,y3.再利用对称性可得$\left\{\begin{array}{l}{\frac{{y}_{3}+{y}_{4}}{2}=\frac{{x}_{3}+{x}_{4}}{2}+1}\\{\frac{{y}_{4}-{y}_{3}}{{x}_{4}-{x}_{3}}=-1}\end{array}\right.$,可得x4,y4.代入x2+y2=1.解出即可.
解答 解:(1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得c=2,a=2$\sqrt{2}$,b=1.
∴椭圆的方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1.
(2)设A(x1,y1),B(x2,y2),M(x3,y3),M关于直线y=x+1的对称点为V(x4,y4).
由$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,化为3x2+4mx+2m2-8=0.
∴△=96-8m2>0⇒-2$\sqrt{3}$<m<2$\sqrt{3}$.
∴x3=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2m}{3}$,y3=x3+m=$\frac{m}{3}$.
又$\left\{\begin{array}{l}{\frac{{y}_{3}+{y}_{4}}{2}=\frac{{x}_{3}+{x}_{4}}{2}+1}\\{\frac{{y}_{4}-{y}_{3}}{{x}_{4}-{x}_{3}}=-1}\end{array}\right.$,可得x4=$\frac{m}{3}-1$,y4=1-$\frac{2m}{3}$.
∵点V(x4,y4)在x2+y2=1上.
∴($\frac{m}{3}$-1)2+(1-$\frac{2m}{3}$)2=1,
∴5m2-18m+9=0,
∴m=$\frac{3}{5}$或m=3,
经检验成立.
∴m=$\frac{3}{5}$或m=3.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、轴对称的性质,考查了推理能力与计算能力,属于难题.
生产量x(单位:吨) | 50 | 100 | 130 | 180 | 200 | 250 | 300 |
生产总成本y(单位:万元) | 2750 | 2000 | 1750 | 1800 | 2050 | 2750 | 4050 |
①y=ax2+b,②y=$\frac{1}{10}{x}^{2}+ax+b$,③y=a•bx,④y=a•logbx.根据上表数据,从上述四个函数中选取一个最恰当的函数描述y与x的变化关系,并通过表中前两组数据,求出y与x的函数解析式;
(2)根据你求出的函数解析式,试问当年产量为多少吨时,生产每吨的平均成本最低?每吨的最低成本是多少?
(3)若将每吨产品的出厂价定为16万元,则年产量为多少吨时,方可使得全年的利润最大?并求出全年的最大利润.