题目内容
【题目】如图,将边长为2的正方形沿对角线折叠,使得平面平面,又平面.
(1)若,求直线与直线所成的角;
(2)若二面角的大小为,求的长度.
【答案】(1);(2)
【解析】
(1)由题意可知,AB⊥AD, AE⊥平面ABD,以A为原点,AB、AD、AE所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,作,垂足为,可得,得到C点坐标,利用向量法能求得,即可得到所求角.
(2)设的长度为,则,由题意知平面,可得平面的一个法向量为,再求得平面的法向量为, ,解得a即可.
∵正方形边长为2 ∴,,
又平面,∴以点为原点,,,所在直线为,,轴建立空间直角坐标系.
作,垂足为,∵平面平面,平面,平面平面,∴平面∵ ∴点为的中点,,
(1)∵
∴,,,,
∴, ∴
∴ ∴直线与直线所成角为;
(2)设的长度为,则
∵平面 ∴平面的一个法向量为
设平面的法向量为,又,
∴, ∴,解得:,取,则,
∴平面的一个法向量为
∴
∵二面角的大小为 ∴,解得:
∴的长度为.
【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明,近几年来,郑州市雾霾治理取得了很大成效,空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据,播报我市的空气质量.
(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值;
(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天在内.
组数 | 分组 | 天数 |
第一组 | 3 | |
第二组 | 4 | |
第三组 | 4 | |
第四组 | 6 | |
第五组 | 5 | |
第六组 | 4 | |
第七组 | 3 | |
第八组 | 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准,如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为,求的分布列及数学期望.