ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶¨ÒåÔÚ£¨0£¬+¡Þ£©ÉϵÄÈý¸öº¯Êýf£¨x£©=lnx£¬g£¨x£©=x2-af£¨x£©£¬h(x)=x-a
£¬ÇÒg£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£®
£¨¢ñ£©Çóº¯Êýg£¨x£©ÔÚx=2´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯Êýh£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©°Ñh£¨x£©¶ÔÓ¦µÄÇúÏßC1ÏòÉÏƽÒÆ6¸öµ¥Î»ºóµÃµ½ÇúÏßC2£¬ÇóC2Óëg£¨x£©¶ÔÓ¦ÇúÏßC3µÄ½»µã¸öÊý£¬²¢ËµÃ÷ÀíÓÉ£®
Ç뿼ÉúÔÚµÚ22¡¢23¡¢24ÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö£®
×÷´ðʱ£¬ÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£®
x |
£¨¢ñ£©Çóº¯Êýg£¨x£©ÔÚx=2´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯Êýh£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©°Ñh£¨x£©¶ÔÓ¦µÄÇúÏßC1ÏòÉÏƽÒÆ6¸öµ¥Î»ºóµÃµ½ÇúÏßC2£¬ÇóC2Óëg£¨x£©¶ÔÓ¦ÇúÏßC3µÄ½»µã¸öÊý£¬²¢ËµÃ÷ÀíÓÉ£®
Ç뿼ÉúÔÚµÚ22¡¢23¡¢24ÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»Ìâ¼Ç·Ö£®
×÷´ðʱ£¬ÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£®
·ÖÎö£º£¨I£©±íʾ³öº¯Êýg£¨x£©ºó¶ÔÆä½øÐÐÇóµ¼£¬½«x=1´úÈëµ¼Êýg'£¨x£©¼´¿ÉµÃµ½´ð°¸£®ÓûÇóÔÚµãx=2´¦µÄÇÐÏß·½³Ì£¬Ö»ÐëÇó³öÆäбÂʵÄÖµ¼´¿É£¬¹ÊÏÈÀûÓõ¼ÊýÇó³öÔÚx=2´¦µÄµ¼º¯ÊýÖµ£¬ÔÙ½áºÏµ¼ÊýµÄ¼¸ºÎÒâÒå¼´¿ÉÇó³öÇÐÏßµÄбÂÊ£®´Ó¶øÎÊÌâ½â¾ö£®
£¨II£©ÏÈÇóµ¼Êýf¨@£¨x£©È»ºóÔÚº¯ÊýµÄ¶¨ÒåÓòÄڽⲻµÈʽf¨@£¨x£©£¾0ºÍf¨@£¨x£©£¼0£¬f¨@£¨x£©£¾0µÄÇø¼äΪµ¥µ÷ÔöÇø¼ä£¬f¨@£¨x£©£¼0µÄÇø¼äΪµ¥µ÷¼õÇø¼ä£®
£¨III£©±íʾ³öC2µÄ½âÎöʽ£¬h1£¨x£©£¬×ª»¯ÎªÇóh1£¨x£©Óëg£¨x£©µÄ½»µã¸öÊý¼´¿É£®
£¨II£©ÏÈÇóµ¼Êýf¨@£¨x£©È»ºóÔÚº¯ÊýµÄ¶¨ÒåÓòÄڽⲻµÈʽf¨@£¨x£©£¾0ºÍf¨@£¨x£©£¼0£¬f¨@£¨x£©£¾0µÄÇø¼äΪµ¥µ÷ÔöÇø¼ä£¬f¨@£¨x£©£¼0µÄÇø¼äΪµ¥µ÷¼õÇø¼ä£®
£¨III£©±íʾ³öC2µÄ½âÎöʽ£¬h1£¨x£©£¬×ª»¯ÎªÇóh1£¨x£©Óëg£¨x£©µÄ½»µã¸öÊý¼´¿É£®
½â´ð£º½â£º£¨I£©g£¨x£©=x2-af£¨x£©=x2-alnx£¬g¡ä(x)=2x-
£¬g'£¨1£©=2-a=0
¡àa=2¾¼ìÑéa=2³ÉÁ¢
ÓÖg£¨2£©=4-2ln2£¬g'£¨2£©=3£¬¡ày-4+2ln2=3£¨x-2£©
¼´º¯Êýg£¨x£©ÔÚx=2´¦µÄÇÐÏß·½³Ì£º3x-y-2-2ln2=0
£¨II£©h(x)=x-2
£¬¶¨ÒåÓò[0£¬+¡Þ£©h¡ä(x)=1-
£¬
Áîh¡ä(x)=1-
£¾0£¬µÃx£¾1£»Áîh¡ä(x)=1-
£¼0µÃ0£¼x£¼1£¬
¡àº¯Êýh£¨x£©µ¥µ÷µÝÔöÇø¼äÊÇ£¨1£¬+¡Þ£©£¬µ¥µ÷µÝ¼õÇø¼äÊÇ£¨0£¬1£©£®
£¨III£©ÓÉ£¨1£©Öªg£¨x£©=x2-2lnx£¬h(x)=x-2
£¬¶¨ÒåÓò[0£¬+¡Þ£©
¡àC2¶ÔÓ¦µÄ±í´ïʽΪh1(x)=x-2
+6£¬ÎÊÌâת»¯ÎªÇóº¯Êýg£¨x£©=x2-2lnxÓëh1(x)=x-2
+6ͼÏó½»µã¸öÊýÎÊÌ⣬¹ÊÖ»ÐèÇó·½³Ìx2-2lnx=x-2
+6£¬¼´2
-2lnx=-x2+x+6¸ùµÄ¸öÊý
Éèh2(x)=2
-2lnx£¬h3£¨x£©=-x2+x+6£¬h2¡ä(x)=
-
=
=
£¬
µ±x¡Ê£¨0£¬4£©£¬h2¡ä£¨x£©£¼0£¬h2£¨x£©Îª¼õº¯Êý£»µ±x¡Ê£¨4£¬+¡Þ£©£¬h2¡ä£¨x£©£¾0£¬h2£¨x£©ÎªÔöº¯Êý£¬¶øh3(x)=-x2+x+6=-(x-
)2+
£¬Í¼ÏóÊÇ¿ª¿ÚÏòϵÄÅ×ÎïÏߣ¬×÷³öº¯Êýh2£¨x£©Óëh3£¨x£©µÄͼÏó£¬h3(
)=
£¬¶øh2(
)=
-2ln
=
+2ln2£¼h3(
)¿ÉÖª½»µã¸öÊýΪ2¸ö£¬¼´ÇúÏßC2ÓëC3µÄ½»µã¸öÊýΪ2¸ö£®
a |
x |
¡àa=2¾¼ìÑéa=2³ÉÁ¢
ÓÖg£¨2£©=4-2ln2£¬g'£¨2£©=3£¬¡ày-4+2ln2=3£¨x-2£©
¼´º¯Êýg£¨x£©ÔÚx=2´¦µÄÇÐÏß·½³Ì£º3x-y-2-2ln2=0
£¨II£©h(x)=x-2
x |
1 | ||
|
Áîh¡ä(x)=1-
1 | ||
|
1 | ||
|
¡àº¯Êýh£¨x£©µ¥µ÷µÝÔöÇø¼äÊÇ£¨1£¬+¡Þ£©£¬µ¥µ÷µÝ¼õÇø¼äÊÇ£¨0£¬1£©£®
£¨III£©ÓÉ£¨1£©Öªg£¨x£©=x2-2lnx£¬h(x)=x-2
x |
¡àC2¶ÔÓ¦µÄ±í´ïʽΪh1(x)=x-2
x |
x |
x |
x |
Éèh2(x)=2
x |
1 | ||
|
2 |
x |
| ||||
x
|
| ||
x |
µ±x¡Ê£¨0£¬4£©£¬h2¡ä£¨x£©£¼0£¬h2£¨x£©Îª¼õº¯Êý£»µ±x¡Ê£¨4£¬+¡Þ£©£¬h2¡ä£¨x£©£¾0£¬h2£¨x£©ÎªÔöº¯Êý£¬¶øh3(x)=-x2+x+6=-(x-
1 |
2 |
25 |
4 |
1 |
2 |
25 |
4 |
1 |
2 |
2 |
1 |
2 |
2 |
1 |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éͨ¹ýÇóº¯ÊýµÄµ¼ÊýÀ´È·¶¨º¯ÊýµÄÔö¼õÇø¼äµÄÎÊÌ⣮ÕâÀïÒªÊì¼Ç¸÷ÖÖº¯ÊýµÄÇóµ¼·¨Ôò£¬Óõ¼ÊýÅжϺ¯ÊýµÄµ¥µ÷ÐԵIJ½ÖèÊÇ£º£¨1£©È·¶¨º¯ÊýµÄ¶¨ÒåÓò£»£¨2£©Çóµ¼Êýf¨@£¨x£©£»£¨3£©ÔÚº¯ÊýµÄ¶¨ÒåÓòÄڽⲻµÈʽf¨@£¨x£©£¾0ºÍf¨@£¨x£©£¼0£»£¨4£©È·¶¨º¯ÊýµÄµ¥µ÷Çø¼ä£®ÈôÔÚº¯ÊýʽÖк¬×ÖĸϵÊý£¬ÍùÍùÒª·ÖÀàÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿