题目内容

13.已知角x≠$\frac{kπ}{2}$(k∈Z),函数F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$,则F(x)可能取值的个数是(  )
A.1B.2C.3D.4

分析 由诱导公式化简,分类讨论去绝对值即可.

解答 解:由诱导公式化简可得F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$,
∵角x≠$\frac{kπ}{2}$(k∈Z),∴角x的终边不在坐标轴,
∴当x为第一象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1+1+1=3;
当x为第二象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1-1-1=1;
当x为第三象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1-1+1=1;
当x为第四象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1+1-1=1.
故F(x)可能取值的个数为2.
故选:B.

点评 本题考查三角函数化简求值,涉及分类讨论的思想和诱导公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网