题目内容
【题目】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=,定义ST=0;若T={t1 , t2 , …,tk},定义ST= + +…+ .例如:T={1,3,66}时,ST=a1+a3+a66 . 现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T{1,2,…,k},求证:ST<ak+1;
(3)设CU,DU,SC≥SD , 求证:SC+SC∩D≥2SD .
【答案】
(1)解:当T={2,4}时,ST=a2+a4=a2+9a2=30,
因此a2=3,从而a1= =1,
故an=3n﹣1
(2)解:ST≤a1+a2+…ak=1+3+32+…+3k﹣1= <3k=ak+1
(3)解:设A=C(C∩D),B=D(C∩D),则A∩B=,
分析可得SC=SA+SC∩D,SD=SB+SC∩D,则SC+SC∩D﹣2SD=SA﹣2SB,
因此原命题的等价于证明SC≥2SB,
由条件SC≥SD,可得SA≥SB,
①、若B=,则SB=0,故SA≥2SB,
②、若B≠,由SA≥SB可得A≠,设A中最大元素为l,B中最大元素为m,
若m≥l+1,则其与SA<ai+1≤am≤SB相矛盾,
因为A∩B=,所以l≠m,则l≥m+1,
SB≤a1+a2+…am=1+3+32+…+3m﹣1= ≤ = ,即SA≥2SB,
综上所述,SA≥2SB,
故SC+SC∩D≥2SD
【解析】(1)根据题意,由ST的定义,分析可得ST=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由ST的定义,分析可得ST≤a1+a2+…ak=1+3+32+…+3k﹣1 , 由等比数列的前n项和公式计算可得证明;(3)设A=C(C∩D),B=D(C∩D),则A∩B=,进而分析可以将原命题转化为证明SC≥2SB , 分2种情况进行讨论:①、若B=,②、若B≠,可以证明得到SA≥2SB , 即可得证明.
【题目】持续性的雾霾天气严重威胁着人们的身体健康,汽车排放的尾气是造成雾霾天气的重要因素之一.为了贯彻落实国务院关于培育战略性新兴产业和加强节能减排工作的部署和要求,中央财政安排专项资金支持开展私人购买新能源汽车补贴试点.2017年国家又出台了调整新能源汽车推广应用财政补贴的新政策,其中新能源乘用车推广应用补贴标准如表: 某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.
纯电动续驶里程R(公里) | 100≤R<150 | 150≤R<250 | R>250 |
补贴标准(万元/辆) | 2 | 3.6 | 44 |
(1)请根据频率分布直方图统计这20辆纯电动乘用车的平均续驶里程;
(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).