题目内容

若直角坐标平面内不同的两点P、Q满足条件:①P、Q都在函数f(x)=
log2x(x>0)
-x2-4x(x≤0)
y=f(x)的图象上
②P,Q关于原点对称,则称点对[P,Q]是函数Y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).若函数,则此函数的“友好点对”有(  )对.
分析:根据题意:“友好点对”,可知,欲求f(x)的“友好点对”,只须作出函数y=-x2-4x(x≤0)的图象关于原点对称的图象,看它与函数f(x)=log2x,(x>0)交点个数即可.
解答:解:根据题意:当x>0时,-x<0,
则f(-x)=-(-x)2-4(-x)=-x2+4x,
则函数y=-x2-4x(x≤0)的图象关于原点对称的函数是y=x2-4x(x≥0)
由题意知,作出函数y=x2-4x(x≥0)的图象及函数f(x)=log2x,(x>0)的图象如下图所示
由图可得两个函数图象共有两个交点,
精英家教网
即函数f(x)的“友好点对”有2对,
故选C.
点评:本题考查了奇偶函数图象的对称性,体现了数形结合思想,解答的关键是对“友好点对”的理解,合理的利用图象解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网