ÌâÄ¿ÄÚÈÝ
Ñ¡×öÌ⣨Ç뿼ÉúÔÚÒÔÏÂÈý¸öСÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨1£©£¨²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x-1|+|x-5|-a£©£¬µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪRʱ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª______
£¨2£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ABÊÇ°ëÔ²OµÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD¡ÍAB£¬´¹×ãΪD£¬ÇÒAD=5DB£¬Éè¡ÏCOD=¦È£¬Ôòtan¦ÈµÄֵΪ______£®
£¨3£©£¨×ø±êϵÓë²ÎÊý·½³Ì£©Ô²O1ºÍÔ²O2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=-4sin¦È£¬Ôò¾¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ______£®
£¨1£©£¨²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x-1|+|x-5|-a£©£¬µ±º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪRʱ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª______
£¨2£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ABÊÇ°ëÔ²OµÄÖ±¾¶£¬µãCÔÚ°ëÔ²ÉÏ£¬CD¡ÍAB£¬´¹×ãΪD£¬ÇÒAD=5DB£¬Éè¡ÏCOD=¦È£¬Ôòtan¦ÈµÄֵΪ______£®
£¨3£©£¨×ø±êϵÓë²ÎÊý·½³Ì£©Ô²O1ºÍÔ²O2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=-4sin¦È£¬Ôò¾¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ______£®
£¨1£©¡ßº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬¡à|x-1|+|x-5|-a£¾0¶ÔÓÚx¡ÊRºã³ÉÁ¢£¬
¶ø|x-1|+|x-5|-a£¾0¶ÔÓÚx¡ÊRºã³ÉÁ¢?a£¼£¨|x-1|+|x-5|£©min£®
Áîg£¨x£©=|x-1|+|x-5|=
£¬¿ÉÖªg£¨x£©min=4£¬¡àa£¼4£®
£¨2£©Á¬½ÓAC£¬BC£¬¡ßABÊÇÔ²OµÄÖ±¾¶£¬¡àAC¡ÍBC£¬ÓÖ¡ßCD¡ÍAB£¬¡àCD2=AD¡ÁDB£¬
¡ßAD=5DB£¬¡àCD2=5DB2£¬¡àCD=
DB£®
¡ßr=
=3DB£¬¡àOD=r-DB=2DB£®
ÔÚRt¡÷OCDÖУ¬tan¦È=
=
=
£®
£¨3£©Ô²O1µÄ¼«×ø±ê·½³Ì¦Ñ=4cos¦È¿ÉÒÔ»¯Îª¦Ñ2=4¦Ñcos¦È£¬¡àx2+y2=4x£¬¡à£¨x-2£©2+y2=4£¬¡àÔ²ÐÄO1£¨2£¬0£©£»
Ô²O2µÄ¼«×ø±ê·½³Ì¦Ñ=-4sin¦È¿É»¯Îª¦Ñ2=4¦Ñsin¦È£¬¡àx2+y2=4y£¬Åä·½µÃx2+£¨y-2£©2=4£¬¡àÔ²ÐÄO2£¨0£¬2£©£®
¡à¾¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ y=
x+2£¬¼´y=x+2£®
¹Ê´ð°¸·Ö±ðΪ£¨-¡Þ£¬4£©£¬
£¬y=x+2£®
¶ø|x-1|+|x-5|-a£¾0¶ÔÓÚx¡ÊRºã³ÉÁ¢?a£¼£¨|x-1|+|x-5|£©min£®
Áîg£¨x£©=|x-1|+|x-5|=
|
£¨2£©Á¬½ÓAC£¬BC£¬¡ßABÊÇÔ²OµÄÖ±¾¶£¬¡àAC¡ÍBC£¬ÓÖ¡ßCD¡ÍAB£¬¡àCD2=AD¡ÁDB£¬
¡ßAD=5DB£¬¡àCD2=5DB2£¬¡àCD=
5 |
¡ßr=
AD+DB |
2 |
ÔÚRt¡÷OCDÖУ¬tan¦È=
CD |
OD |
| ||
2DB |
| ||
2 |
£¨3£©Ô²O1µÄ¼«×ø±ê·½³Ì¦Ñ=4cos¦È¿ÉÒÔ»¯Îª¦Ñ2=4¦Ñcos¦È£¬¡àx2+y2=4x£¬¡à£¨x-2£©2+y2=4£¬¡àÔ²ÐÄO1£¨2£¬0£©£»
Ô²O2µÄ¼«×ø±ê·½³Ì¦Ñ=-4sin¦È¿É»¯Îª¦Ñ2=4¦Ñsin¦È£¬¡àx2+y2=4y£¬Åä·½µÃx2+£¨y-2£©2=4£¬¡àÔ²ÐÄO2£¨0£¬2£©£®
¡à¾¹ýÁ½Ô²Ô²ÐĵÄÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ y=
0-2 |
2-0 |
¹Ê´ð°¸·Ö±ðΪ£¨-¡Þ£¬4£©£¬
| ||
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿