题目内容
.直线与曲线相切于点,则的值为 。
3
【解析】
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
如图所示的曲线是由部分抛物线和曲线“合成”的,直线与曲线相切于点,与曲线相切于点,记点的横坐标为,其中.
(1)当时,求的值和点的坐标;
(2)当实数取何值时,?并求出此时直线的方程.
(本小题满分14分)已知函数有两个极值点,且直线与曲线相切于点.
(1) 求和
(2) 求函数的解析式;
(3) 在为整数时,求过点和相切于一异于点的直线方程
直线与曲线相切于点,则 。