搜索
题目内容
已知函数f(x)=a
x
+b(a>0且a≠1)的图象如图所示,则a,b的值分别是( )
A.a=2,b=4
B.a=2,b=-4
C.
a=
3
,b=-3
D.
a=
3
,b=3
试题答案
相关练习册答案
分析:
由图象知,f(x)的图象是由y=a
x
图象向下平移4个单位长度得到的,由此可得b值,再由f(2)=0可得a值.
解答:
解:由图象知,f(x)的图象是由y=a
x
图象向下平移4个单位长度得到的,所以b=-4,
由f(2)=0,即a
2
-4=0得a=2,
故选B.
点评:
本题考查指数函数的图象变换,属中档题.
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
已知函数f(x)=
a-
x
2
x
+lnx (a∈R , x∈[
1
2
, 2])
(1)当
a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x
2
,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.
(2009•海淀区二模)已知函数f(x)=a-2
x
的图象过原点,则不等式
f(x)>
3
4
的解集为
(-∞,-2)
(-∞,-2)
.
已知函数f(x)=a
|x|
的图象经过点(1,3),解不等式
f(
2
x
)>3
.
已知函数f(x)=a•2
x
+b•3
x
,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.
已知函数f(x)=a-2
|x|
+1(a≠0),定义函数F(x)=
f(x) , x>0
-f(x) , x<0
给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总