题目内容
【题目】已知椭圆:()的右顶点与抛物线:()的焦点重合.的离心率为,过的右焦点F且垂直于x轴的直线截所得的弦长为.
(1)求椭圆和抛物线的方程;
(2)过点的直线l与椭圆交于A,B两点,点B关于x轴的对称点为点E,证明:直线过定点.
【答案】(1),;(2)见解析
【解析】
(1)由题意可得,由于椭圆的离心率可得a,c的关系,进而可得p,c的关系,再由过的右焦点F且垂直于x轴的直线截所得的弦长为可得c的值,再由a,b,c的关系求出椭圆的方程及抛物线的方程;
(2)设直线的方程,及A,B的坐标由题意可得E的坐标,将直线与椭圆联立可得两根之和及两根之积,求出直线的直线方程,将两根之和及之积代入可得恒过定点.
(1)由的离心率为,可得,所以,
因为椭圆的右顶点与抛物线的焦点重合,所以,,
所以可得,
过的右焦点F且垂直于x轴的直线截所得的弦长为,k令代入抛物线的方程:可得,所以,
即,解得,所以,
由可得,
所以椭圆和抛物线的方程分别为:,;
(2)由题意可得直线l的斜率存在且不为0,设直线l的方程为:,设,,由题意可得,
直线与椭圆联立:,
整理可得:,,
可得,,,
直线的方程为:,
整理可得:
所以当时,,即过定点,
所以可证直线过定点.
练习册系列答案
相关题目