ÌâÄ¿ÄÚÈÝ

£¨2009•ÁijÇһģ£©¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=xk£¨x¡Ê£¨0£¬+¡Þ£©£¬k¡ÊN*£¬k£¾1£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£»ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2£»¡­£»ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2£¬¡­Mn£¬¡­£»ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡­£¬
an¡­¹¹³ÉÊýÁÐΪ{an}£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£ºan¡Ý1+
n
k-1
£»
£¨¢ó£©µ±k=2ʱ£¬Áîbn=
n
an
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®
·ÖÎö£º£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬µÃy¡ä=kxk-1£¬ÇеãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®µ±n=1ʱ£¬a1=
k
k-1
£»µ±n£¾1ʱ£¬µÃ
an
an-1
=
k
k-1
£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2+¡­+
C
n
n
(
1
k-1
)n¡Ý1+
n
k-1
£®
£¨ III£©µ±k=2ʱ£¬an=2n£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
£¬ÀûÓôíλÏà¼õ·¨Äܹ»µÃµ½Sn=2-
n+2
2n
£®
½â´ð£º½â£º£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬
µÃy¡ä=kxk-1£¬
µãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®¡­£¨2·Ö£©
µ±n=1ʱ£¬ÇÐÏß¹ýµãP£¨1£¬0£©£¬
¼´0-a1k=ka1k-1£¨1-a1£©£¬
µÃa1=
k
k-1
£»
µ±n£¾1ʱ£¬ÇÐÏß¹ýµãPn-1£¨an-1£¬0£©£¬
¼´0-ank=kank-1£¨an-1-an£©£¬
µÃ
an
an-1
=
k
k-1
£®
ËùÒÔÊýÁÐ{an}ÊÇÊ×Ïîa1=
k
k-1
£¬¹«±ÈΪ
k
k-1
µÄµÈ±ÈÊýÁУ¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽΪan=(
k
k-1
)n£¬n¡ÊN*
£®¡­£¨4·Ö£©
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2+¡­+
C
n
n
(
1
k-1
)n¡Ý1+
n
k-1
£®¡­£¨8·Ö£©
£¨ III£©µ±k=2ʱ£¬an=2n£¬
ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
£¬
ͬ³ËÒÔ
1
2
£¬µÃ
1
2
Sn
=
1
22
+
2
23
+
3
24
+¡­+
n
2n+1
£¬
Á½Ê½Ïà¼õ£¬¡­£¨10·Ö£©
µÃ
1
2
Sn
=
1
2
+
1
22
+
1
23
+¡­+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1
£¬
ËùÒÔSn=2-
n+2
2n
£®¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬Ö¤Ã÷an¡Ý1+
n
k-1
£¬ÇóÊýÁеÄÇ°nÏîºÍ£®¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÒªÈÏÕæÉóÌ⣬עÒâ´íλÏà¼õ·¨µÄÁé»îÔËÓ㬱¾ÌâÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø