题目内容

已知结论:“在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则
AG
GD
=2
”,若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则
AO
OM
=(  )
分析:类比平面几何结论,推广到空间,则有结论:“
AO
OM
=3”.设正四面体ABCD边长为1,易求得AM=
6
3
,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=
3V
S
,可求得r即OM,从而可验证结果的正确性.
解答:解:推广到空间,则有结论:“
AO
OM
=3”.
设正四面体ABCD边长为1,易求得AM=
6
3
,又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=
3V
S
,可求得r即OM=
6
12

所以AO=AM-OM=
6
4
,所以
AO
OM
=3
故答案为:3
点评:本题考查类比推理、几何体的结构特征、体积法等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网