题目内容
【题目】下列命题中错误的是
A. 若命题p为真命题,命题q为假命题,则命题“pV(q)”为真命题
B. 命题“若a+b≠7,则a≠2或b≠5”为真命题
C. 命题“若x2-x=0,则x=0或x=1”的否命题为“若x2-x=0,则x≠0且x≠1”
D. 命题p: x>0,sinx>2x-1,则p为x>0,sinx≤2x-1
【答案】C
【解析】分析:对该题逐项分析即可.A项根据复合命题的真值易得;B项转化为判断其逆否命题容易判断;C项否命题也要否定条件;D项由含有一个量词的命题的否定易得.
详解:因为命题“若x2-x=0,则x=0或x=1”的否命题为
“若 ,则x≠0且x≠1”,所以C是错误的,
根据有关命题的知识能判断出A、B、D三项都是正确的,
故选C.
【题目】为弘扬中华民族传统文化,某中学学生会对本校高一年级1000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
参加人数占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | 12% | 4% | 2% |
估计该校高一学生参加传统文化活动情况正确的是().
A. 参加活动次数是3场的学生约为360人B. 参加活动次数是2场或4场的学生约为480人
C. 参加活动次数不高于2场的学生约为280人D. 参加活动次数不低于4场的学生约为360人
【题目】某地区随着经济的发展,居民收入逐年增长,银行储蓄连年增长,下表是该地区某银行连续五年的储蓄存款(年底结算):
年份 | |||||
储蓄存款(千亿元) |
为方便研究,工作人员对上表的数据做了如下处理:,得到下表:
(1)用最小二乘法求出关于的线性回归方程;
(2)通过(1)中的方程,求出关于的线性回归方程,并用所求回归方程预测年底,该地储蓄存款额可达多少?
(附:参考公式,其中,)