题目内容

【题目】在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π +8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为

【答案】2π2+16π
【解析】解:因为几何体为Ω的水平截面的截面积为4 +8π,该截面的截面积由两部分组成,
一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4 ,看作是把一个半径为1,
高为2π的圆柱平放得到的,如图所示,

这两个几何体与Ω放在一起,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,
即Ω的体积为π122π+28π=2π2+16π.
所以答案是2π2+16π.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网