题目内容
数列 1
,2
,3
,4
,5
,…,的前n项之和等于______.
1 |
2 |
1 |
4 |
1 |
8 |
1 |
16 |
1 |
32 |
由题意可知数列的通项公式为:an=n+
故前n项之和为:(1+
)+(2+
)+(3+
)+…+(n+
)
=(1+2+3+…+n)+(
+
+
+…+
)
=
+
=
+1-(
)n
故答案为:
+1-(
)n
1 |
2n |
故前n项之和为:(1+
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
=(1+2+3+…+n)+(
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
=
n(n+1) |
2 |
| ||||
1-
|
=
n(n+1) |
2 |
1 |
2 |
故答案为:
n(n+1) |
2 |
1 |
2 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目