题目内容
【题目】各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn= ,求数列{bn}的前n项和T.
【答案】
(1)解:∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p
∴2a1=2pa12+pa1﹣p,即2=2p+p﹣p,解得p=1
(2)解:2Sn=2an2+an﹣1,①
2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),②
① ﹣②即得(an﹣an﹣1﹣ )(an+an﹣1)=0,
因为an+an﹣1≠0,所以an﹣an﹣1﹣ =0,
∴
(3)解:2Sn=2an2+an﹣1=2× ,
∴Sn= ,
∴ =n2n
Tn=1×21+2×22+…+n2n③
又2Tn=1×22+2×23+…+(n﹣1)2n+n2n+1 ④
④﹣③Tn=﹣1×21﹣(22+23+…+2n)+n2n+1=(n﹣1)2n+1+2
∴Tn=(n﹣1)2n+1+2
【解析】(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan﹣p,令n=1,解方程即可求得结果;(2)由2Sn=2an2+an﹣1,知2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),所以(an﹣an﹣1﹣1)(an+an﹣1)=0,由此能求出数列{an}的通项公式.(3)根据 求出数列{bn}的通项公式,利用错位相减法即可求得结果.
练习册系列答案
相关题目