题目内容
【题目】如图所示,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.
求证:(1)DE∥平面ABB1A1;
(2)BC1⊥平面A1B1C.
【答案】(1)见解析;(2)见解析
【解析】
(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;
(2)因为三棱柱ABCA1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.
(1)因为三棱柱ABCA1B1C1为直三棱柱, 所以侧面ACC1 A1为平行四边形.
又A1C与AC1交于点D,所以D为AC1的中点,
同理,E为BC1的中点.所以DE∥AB. 又AB平面ABB1 A1,DE平面ABB1 A1,
所以DE∥平面ABB1A1.
(2)因为三棱柱ABCA1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.
又因为A1B1平面A1B1C1,所以BB1⊥A1B1. 又A1B1⊥B1C1,BB1,B1C1平面BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.
又因为BC1平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C 平面A1B1C,
所以BC1⊥平面A1B1C.
练习册系列答案
相关题目