题目内容
设函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_ST/0.png)
【答案】分析:依据题意利用函数解析式,根据题设不等式求得1-a<(
)x+(
)x+…+(
)x=g(x).根据m的范围,判断出g(x)在[1,+∞)上单调递减.,进而求得函数g(x)的最大值,利用g(x)max>1-a求得a范围.
解答:解:f(x)=lg
>(x-1)lgm=lgmx-1,
∴
>mx-1.
∴1-a<(
)x+(
)x+…+(
)x=g(x).
∵
,
,…,
∈(0,1),
∴g(x)在[1,+∞)上单调递减.
∴g(x)max=f(1)=
+
+…+
=
.
由题意知,1-a<
,
∴a>
.又m是给定的正整数,且m≥2,故a>![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/17.png)
故答案为:a>
.
点评:本题主要考查了函数的单调性的性质.考查了学生对函数基础知识的掌握程度.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/2.png)
解答:解:f(x)=lg
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/3.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/4.png)
∴1-a<(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/7.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/10.png)
∴g(x)在[1,+∞)上单调递减.
∴g(x)max=f(1)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/14.png)
由题意知,1-a<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/15.png)
∴a>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/17.png)
故答案为:a>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212217257840703/SYS201310232122172578407013_DA/18.png)
点评:本题主要考查了函数的单调性的性质.考查了学生对函数基础知识的掌握程度.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目