题目内容
【题目】已知曲线上任意一点到直线:的距离是它到点距离的2倍;曲线是以原点为顶点,为焦点的抛物线.
(1)求,的方程;
(2)设过点的动直线与曲线相交于,两点,分别以,为切点引曲线的两条切线,,设,相交于点.连接的直线交曲线于,两点.
(i)求证:;
(ii)求的最小值.
【答案】(1)的方程为,的方程为(2)(i)证明见解析(ii)
【解析】
(1)根据几何特征列方程即可求解曲线方程;
(2)联立直线与曲线方程,结合韦达定理处理,(i)证明斜率之积为-1,(ii)化简代数式根据基本不等式求解最值.
(1)设,则由题意有,化简得:.
故的方程为,
为抛物线的焦点,设其方程,
易知的方程为.
(2)(i)由题意可设的方程为,代入得,
设,,则,由有,
所以,的方程分别为,.故,
即,,从而.
(ii)可设的方程为,代入得
,设,,
则,
所以
(其中).
设,则,故在单调递增,
因此,
当且仅当即等号成立.
故的最小值为7.
【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.
(1)根据散点图判断:与哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,(说明:的导函数为)
【题目】某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按200元/次收费,并注册成为会员,对会员的后续体检给予相应优惠(本次即第一次),标准如下:
体检次序 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次及以上 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.8 |
该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:
体检次数 | 一次 | 两次 | 三次 | 四次 | 五次及以上 |
频数 | 60 | 20 | 12 | 4 | 4 |
假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:
(1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;
(2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.