题目内容

17.已知x1,x2为方程x2-2x+a=0的两根,f(x)=$\frac{1}{3}$x3-x2+ax-a,若f(x1)f(x2)>0,求实数a的取值范围.

分析 分△=0与△>0讨论,当△>0时,利用x1+x2=2,x1x2=a,x12-2x1+a=0,x22-2x2+a=0化简f(x1)f(x2)>0可得a(a2-3a+3)>0,从而解得.

解答 解:(1)当△=4-4a=0,即a=1时,
x1=x2=1,f(x1)f(x2)=$(-\frac{2}{3})^{2}$>0,符合题意;
(2)当△=4-4a>0,即a<1时,
x1+x2=2,x1x2=a,x12-2x1+a=0,x22-2x2+a=0;
∴f(x1)=$\frac{1}{3}$x13-x12+ax1-a
=$\frac{1}{3}$x1(2x1-a)-(2x1-a)+ax1-a
=$\frac{2}{3}$x12-$\frac{1}{3}$ax1-2x1+a+ax1-a
=$\frac{2}{3}$(2x1-a)-$\frac{1}{3}$ax1-2x1+ax1
=$\frac{2}{3}$(a-1)x1-$\frac{2}{3}$a,
同理,f(x2)=$\frac{2}{3}$(a-1)x2-$\frac{2}{3}$a,
∴f(x1)f(x2)=[$\frac{2}{3}$(a-1)x1-$\frac{2}{3}$a][$\frac{2}{3}$(a-1)x2-$\frac{2}{3}$a]
=$\frac{4}{9}$((a-1)2x1x2-a(a-1)(x1+x2)+a2
=$\frac{4}{9}$(a(a-1)2-2a(a-1)+a2)>0,
即a(a2-3a+3)>0,
∴a>0,
又∵a<1,
∴0<a<1;
故实数a的取值范围为(0,1].

点评 本题考查了分类讨论的思想应用及方程的根与系数的关系应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网