题目内容
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知数列
满足
前
项和为
,
.
(1)若数列
满足
,试求数列
前3项的和
;
(2)(理)若数列
满足
,试判断
是否为等比数列,并说明理由;
(文)若数列
满足
,
,求证:
是为等比数列;
(3)当
时,对任意
,不等式
都成立,求
的取值范围.
已知数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344406481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344421433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344437297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344453388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003444681788.png)
(1)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344484479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344499842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344484479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344546362.png)
(2)(理)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344593481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
(文)若数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344593481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344718523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003447331031.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344749266.png)
解:(1)
(2)(理)当
时,数列
成等比数列;
当
时,数列
不为等比数列
理由如下:因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344905847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344905850.png)
,
所以
,
故当
时,数列
是首项为1,公比为
等比数列;
当
时,数列
不成等比数列
(文)因为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345061992.png)
所以
故当
时,数列
是首项为1,公比为
等比数列;
(3)
,所以
成等差数列
当
时
,
因为
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345295849.png)
=
(
)
又
所以
单调递减
当
时,
最大为
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345467901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344765514.png)
(2)(理)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344843508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
理由如下:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344905847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344905850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344936729.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003449521034.png)
故当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344999361.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344843508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
(文)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345061992.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003450771081.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345092618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344577442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344999361.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345186803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344484479.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200344655484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345248786.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003452641450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345279839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345295849.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345326563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345357379.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345373900.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345404584.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345420340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345435377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345451307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823200345467901.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232003454981454.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目