题目内容
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).
解析试题分析:(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;
(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.
试题解析:(1)将圆C配方得:(x+1)2+(y-2)2=2.
①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得:y=(2±)x.
②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切得:x+y+1=0或x+y-3=0.故切线方程为y=(2±)x或x+y+1=0或x+y-3=0.
(2)由|PO|=|PM|,得:
=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l.
∴直线OP的方程为:2x+y=0.解方程组得P点坐标为.
考点:直线和圆的方程的应用.
练习册系列答案
相关题目