题目内容
(09 年聊城一模理)(12分)
已知椭圆:的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足,求的取值范围。
解析:(Ⅰ)由得,;……4分
由直线与圆相切,得,所以,。所以椭圆的方程是.……4分
(II)由条件知,,即动点到定点的距离等于它到直线:的距离,由抛物线的定义得点的轨迹的方程是. ……8分
(III)由(2)知,设,,所以,.
由,得.因为,化简得,……10分
(当且仅当,即时等号成立). ……12分
,又
所以当,即时,,故的取值范围是.……14分
练习册系列答案
相关题目