题目内容

(09 年聊城一模理)(12分)

已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(II)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;

(III)设轴交于点,不同的两点上,且满足,求的取值范围。

解析:(Ⅰ)由得,;……4分

由直线与圆相切,得,所以,。所以椭圆的方程是.……4分

(II)由条件知,,即动点到定点的距离等于它到直线的距离,由抛物线的定义得点的轨迹的方程是.  ……8分

(III)由(2)知,设,所以.

,得.因为,化简得,……10分

(当且仅当,即时等号成立). ……12分

,又

所以当,即时,,故的取值范围是.……14分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网