题目内容

(09 年聊城一模理)(12分)                       

如图,在四棱台ABCD―A1B1C1D1中,下底ABCD是边长

为2的正方形,上底A1B1C1D1是边长为1的正方形,

侧棱DD1⊥平面ABCD,DD1=2.

(Ⅰ)求证:平面

(II)(理)求二面角的余弦值.

(文)求证:平面⊥平面B1BDD1.

解析:以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D―xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). …  3分

(Ⅰ)证明:设则有所以,∴平面;………6分

(II)解:

为平面的法向量,

于是………8分

同理可以求得平面的一个法向量,………10分

∴二面角的余弦值为. ………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网