题目内容

是由个实数组成的列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);  
表1

1
2
3


1
0
1
 
(Ⅱ) 数表如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;
表2

(Ⅲ)对由个整数组成的列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

(Ⅰ) 详见解析;(Ⅱ)  ;(Ⅲ) 能,理由详见解析.

解析试题分析:(I)根据题中一次“操作”的含义,将原数表改变第4列,再改变第2行即可;或者改变第2行,改变第4列也可得(写出一种即可);(II)  每一列所有数之和分别为2,0,-2,0,每一行所有数之和分别为-1,1;①如果操作第三列,第一行之和为2a-1,第二行之和为5-2a,列出不等关系解得a,b;②如果操作第一行,很快即可有条件解得a值;(III) 按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和),由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中mn个数之和增加.
试题解析:(I)
法1:

法2:

法3:

(写出一种即可)                                                        3分
(II)  每一列所有数之和分别为2,0,,0,每一行所有数之和分别为,1;
①如果操作第三列,则

则第一行之和为,第二行之和为
,解得.                            6分
② 如果操作第一行
          
则每一列之和分别为,以上四数均为非负数
解得                                                   9分
综上                                                   10分
(III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和)由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中个数之和增加,且增加的幅度大于等于,但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中个数之和必然小于等于,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立        13分
考点:推理与证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网