题目内容

已知函数f(x)=2sin2(+x)-cos2x-1,x∈[],则f(x)的最小值为________.
1
f(x)=2sin2(+x)-cos2x-1=1-cos2(+x)-cos2x-1=-cos(+2x)-cos2x=sin2x-cos2x=2sin(2x-),因为≤x≤,所以≤2x-,所以sin≤sin(2x-)≤sin,即≤sin(2x-)≤1,所以1≤2sin(2x-)≤2,即1≤f(x)≤2,所以f(x)的最小值为1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网