题目内容

已知数列{an}的前n项和为Sn,点(n,
Sn
n
)
在直线y=x+4上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=
3
2(an-2)(2bn+5)
,数列{cn}的前n项和为Tn,求使不等式Tn
k
75
对一切n∈N*都成立的最大正整数k的值;
(3)设f(n)=
an,(n=2l-1,l∈N*)
bn,(n=2l,l∈N*).
是否存在m∈N*,使得f(m+9)=3f(m)成立?若存在,求出m的值;若不存在,请说明理由.
分析:(1)根据点在直线上,把点的坐标代入直线的方程得到数列的前n项和的表示式,由前n项和做出数列的通项,再得到第二个数列是一个等差数列,写出通项.
(2)构造新数列,把新数列的通项整理成可以应用裂项求和的形式,裂项求出和,证明和式的单调性,根据单调性做出和式的最值,根据数列的最值得到结论.
(3)根据所给的分段函数式,看出函数在自变量取奇数和偶数时的结果不同,因此要分类来解,在两种不同的条件下验证式子是否成立,得到不存在正整数m,使得f(m+9)=3f(m)成立.
解答:解:(1)由题意,得
Sn
n
=n+4
,即Sn=n2+4n.
故当n≥2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3.
注意到n=1时,a1=S1=5,而当n=1时,n+4=5,
所以a=2n+3(n∈N*).
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*),
所以bn为等差数列,于是
11(b4+b8)
2
=154

而b4=8,故b8=20,d=
20-8
4
=3

因此,bn=b4+3(n-4)=3n-4,
即bn=b4+3(n-4)=3n-4(n∈N*).
(2)cn=
3
2(an-2)(2bn+5)
=
3
2[(2n+3)-2][2•(3n-4)+5]
=
3
2(2n+1)(6n-3)
=
1
2(2n+1)(2n-1)
=
1
2(2n-1)(2n+1)

所以,Tn=c1+c2+…+cn=
1
4
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
4
(1-
1
2n+1
)=
n
4n+2

由于Tn+1-Tn=
n+1
4n+6
-
n
4n+2
=
1
(4n+6)(2n+1)
>0

因此Tn单调递增,故T(Tn)min=
1
6

1
6
k
75
,得k<12
1
2
,所以kmax=12.
(3)f(n)=
2n+3(n=2l-1,l∈N*)
3n-4(n=2l,l∈N*)

①当m为奇数时,m+9为偶数.
此时f(m+9)=3(m+9)-4=3m+23,3f(m)=6m+9
所以3m+23=6m+9,m=
14
3
N*
(舍去)
②当m为偶数时,m+9为奇数.
此时,f(m+9)=2(m+9)+3=2m+21,3f(m)=9m-12,
所以2m+21=9m-12,m=
33
7
N*
(舍去).
综上,不存在正整数m,使得f(m+9)=3f(m)成立.
点评:本题考查数列与函数的综合问题,本题解题的关键是构造新数列,利用数列的求和做出结果,再用函数的思想来解题,本题是一个综合题目,难度可以作为高考卷的压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网