题目内容
(本题满分14分)如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成
(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,
求的取值范围,使得二面角P-AD-M为钝二面角。
(Ⅰ)证明PQ⊥BC;
(Ⅱ)若M为棱CQ上的点且,
求的取值范围,使得二面角P-AD-M为钝二面角。
(Ⅰ)见解析; (Ⅱ)
本试题主要是考查了立体几何中的线线垂直的证明,以及二面角的求解的综合运用。
(1)取AD中点E,连结PE,QE ……...2分
均为正三角形得到线线垂直,然后利用线面垂直得到线线垂直的性质定理和判定定理的综合运用。
(2)以正方形ABCD的中心O为原点,OF(F为AB的中点)为x轴,OQ为z轴,
建立空间坐标系,设出点的坐标,然后借助于向量的夹角公式表示二面角的平面角的大小。
解:(Ⅰ)取AD中点E,连结PE,QE ……...2分
均为正三角形
ADPE, ADQE
AD平面PEQ
ADPQ 又AD//BC
PQBC 。。。。。。。。。6分
(Ⅱ)以正方形ABCD的中心O为原点,OF(F为AB的中点)为x轴,OQ为z轴,
建立空间坐标系, 则P(0,-2,), Q(0,0,), B(1,1,0), C(-1,1,0),
A(1,-1,0), D(-1,-1,0) 。。。。。。。。。。8分
平面PAD法向量=(0,,1) 。。。。。。。。。。10分
=(0,2,0),
平面ADM的法向量 。。。。。。。。。12分
。。。。。。。。。。。14分
(1)取AD中点E,连结PE,QE ……...2分
均为正三角形得到线线垂直,然后利用线面垂直得到线线垂直的性质定理和判定定理的综合运用。
(2)以正方形ABCD的中心O为原点,OF(F为AB的中点)为x轴,OQ为z轴,
建立空间坐标系,设出点的坐标,然后借助于向量的夹角公式表示二面角的平面角的大小。
解:(Ⅰ)取AD中点E,连结PE,QE ……...2分
均为正三角形
ADPE, ADQE
AD平面PEQ
ADPQ 又AD//BC
PQBC 。。。。。。。。。6分
(Ⅱ)以正方形ABCD的中心O为原点,OF(F为AB的中点)为x轴,OQ为z轴,
建立空间坐标系, 则P(0,-2,), Q(0,0,), B(1,1,0), C(-1,1,0),
A(1,-1,0), D(-1,-1,0) 。。。。。。。。。。8分
平面PAD法向量=(0,,1) 。。。。。。。。。。10分
=(0,2,0),
平面ADM的法向量 。。。。。。。。。12分
。。。。。。。。。。。14分
练习册系列答案
相关题目