题目内容
10.已知函数f(x)=$\frac{1}{3}$x3-4x+4(x∈R),求f(x)的极大值与极小值.分析 f′(x)=x2-4,令f′(x)=0,解得x=±2,列出表格可得单调性与极值.
解答 解:f′(x)=x2-4,
令f′(x)=0,解得x=±2,
x | (-∞,-2) | -2 | (-2,2) | 2 | (2,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
点评 本题考查了利用导数研究函数的单调性极值,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.若函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则实数a,b的值是( )
A. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | ||
C. | $\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{a=-3}\\{b=-11}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=3}\end{array}}\right.$ |