题目内容
数列{an}满足a1=2,an+1=an2+6an+6(n∈N*).
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=
-
,数列{bn}的前n项和为Tn,求证:Tn<-
.
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn=
1 |
an-6 |
1 | ||
|
1 |
4 |
分析:(1)由an+1=
+6
+6,得
,代入Cn=log5(an+3)可得Cn+1=2Cn,由等比数列定义可证明;
(2)由等比数列通项公式可求得cn,根据Cn=log5(an+3)可求an;
(3)bn=
-
=
-
,则Tn=
-
+
-
+…+
-
可求,由表达式可证;
a | 2 n |
a | n |
|
(2)由等比数列通项公式可求得cn,根据Cn=log5(an+3)可求an;
(3)bn=
1 |
an-6 |
1 | ||
|
1 |
an-6 |
1 |
an+1-6 |
1 |
a1-6 |
1 |
a2-6 |
1 |
a2-6 |
1 |
a3-6 |
1 |
an-6 |
1 |
an+1-6 |
解答:(1)证明:由an+1=
+6
+6,得
,
∴log5(an+1+3)=2log5(an+3),即Cn+1=2Cn,
∴{Cn}是以2为公比的等比数列;
(2)解:又C1=log55=1,∴Cn=2n-1,即 log5(an+3)=2n-1,
∴an+3=52n-1.
故an=52n-1-3.
(3)证明:∵bn=
-
=
-
,
∴Tn=
-
+
-
+…+
-
=
-
=-
-
.
又
>0,
∴Tn<-
.
a | 2 n |
a | n |
|
∴log5(an+1+3)=2log5(an+3),即Cn+1=2Cn,
∴{Cn}是以2为公比的等比数列;
(2)解:又C1=log55=1,∴Cn=2n-1,即 log5(an+3)=2n-1,
∴an+3=52n-1.
故an=52n-1-3.
(3)证明:∵bn=
1 |
an-6 |
1 | ||
|
1 |
an-6 |
1 |
an+1-6 |
∴Tn=
1 |
a1-6 |
1 |
a2-6 |
1 |
a2-6 |
1 |
a3-6 |
1 |
an-6 |
1 |
an+1-6 |
=
1 |
a1-6 |
1 |
an+1-6 |
1 |
4 |
1 |
52n-9 |
又
1 |
52n-9 |
∴Tn<-
1 |
4 |
点评:本题考查等比数列的通项公式、裂项求和,考查学生的运算求解能力.
练习册系列答案
相关题目