题目内容
已知a>0,数列{an}满足a1=a,an+1=a+| 1 |
| an |
(I)已知数列{an}极限存在且大于零,求A=
| lim |
| n→∞ |
(II)设bn=an-A,n=1,2,…,证明:bn+1=-
| bn |
| A(bn+A) |
(III)若|bn|≤
| 1 |
| 2n |
分析:(I)由
an存在,且A=
an(A>0),对an+1=a+
两边取极限得A=a+
,解得A=
.又A>0,∴A=
.
(II)由an=bn+A,an+1=a+
得bn+1+A=a+
.由此可知bn+1=-
.
(III)令|b1|≤
,得|a-
(a+
)|≤
.所以|
(
-a)|≤
.由此可求出a的取值范围.
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| an |
| 1 |
| A |
a±
| ||
| 2 |
a+
| ||
| 2 |
(II)由an=bn+A,an+1=a+
| 1 |
| an |
| 1 |
| bn+A |
| bn |
| A(bn+A) |
(III)令|b1|≤
| 1 |
| 2 |
| 1 |
| 2 |
| a2+4 |
| 1 |
| 2 |
| 1 |
| 2 |
| a2+4 |
| 1 |
| 2 |
解答:解:(I)由
an存在,且A=
an(A>0),对an+1=a+
两边取极限得A=a+
,解得A=
.又A>0,∴A=
.
(II)由an=bn+A,an+1=a+
得bn+1+A=a+
.∴bn+1=a-A+
=-
+
=-
.
即bn+1=-
对n=1,2,都成立
(III)令|b1|≤
,得|a-
(a+
)|≤
.
∴|
(
-a)|≤
.
∴
-a≤1,解得a≥
.
现证明当a≥
时,|bn|≤
对n=1,2,都成立.
(i)当n=1时结论成立(已验证).
(ii)假设当n=k(k≥1)时结论成立,即|bk|≤
,那么|bk+1|=
≤
×
故只须证明
≤
,即证A|bk+A|≥2对a≥
成立.
由于A=
=
,
而当a≥
时,
-a≤1,∴A≥2.
∴|bk+A|≥A-|bk|≥2-
≥1,即A|bk+A|≥2.
故当a≥
时,|bk+1|≤
×
=
.
即n=k+1时结论成立.
根据(i)和(ii)可知结论对一切正整数都成立.
故|bn|≤
对n=1,2,都成立的a的取值范围为[
,+∞).
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| an |
| 1 |
| A |
a±
| ||
| 2 |
a+
| ||
| 2 |
(II)由an=bn+A,an+1=a+
| 1 |
| an |
| 1 |
| bn+A |
| 1 |
| bn+A |
| 1 |
| A |
| 1 |
| bn+A |
| bn |
| A(bn+A) |
即bn+1=-
| bn | ||
A(
|
(III)令|b1|≤
| 1 |
| 2 |
| 1 |
| 2 |
| a2+4 |
| 1 |
| 2 |
∴|
| 1 |
| 2 |
| a2+4 |
| 1 |
| 2 |
∴
| a2+4 |
| 3 |
| 2 |
现证明当a≥
| 3 |
| 2 |
| 1 |
| 2n |
(i)当n=1时结论成立(已验证).
(ii)假设当n=k(k≥1)时结论成立,即|bk|≤
| 1 |
| 2k |
| |bk| |
| |A(bk+A)| |
| 1 |
| A|bk+A| |
| 1 |
| 2k |
故只须证明
| 1 |
| A|bk+A| |
| 1 |
| 2 |
| 3 |
| 2 |
由于A=
a+
| ||
| 2 |
| 2 | ||
|
而当a≥
| 3 |
| 2 |
| a2+4 |
∴|bk+A|≥A-|bk|≥2-
| 1 |
| 2k |
故当a≥
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
即n=k+1时结论成立.
根据(i)和(ii)可知结论对一切正整数都成立.
故|bn|≤
| 1 |
| 2n |
| 3 |
| 2 |
点评:本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关题目