题目内容
已知0<2a<1,若A=1+a2, B=, 则A与B的大小关系是 .
A<B
7. 解析:因为f(x)=3ax+1-2a在(0,1)上存在使,所以f(0)f(1)<0,即(1-2a)(a+1)<0所以
已知随机变量Y的所有可能取值为1,2,…,n,且取这些值的概率依次为k,2k,…,nk,求常数k的值.
已知0<a<b,且a+b=1,则下列不等式中,正确的是( )
A.log2a>0 B.2a-b<
C.2< D.log2a+log2b<-2
已知a、b、cR,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则
A、a>0,4a+b=0 B、a<0,4a+b=0
C、a>0,2a+b=0 D、a<0,2a+b=0
(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.