题目内容
设不等式组
表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是( )
|
分析:根据题意,在区域D内随机取一个点P,则P点到坐标原点的距离小于2时,点P位于图中正方形OABC内,且在扇形OAC的内部,如图中的扇形部分.因此算出图中扇形部分面积,再除以正方形OABC面积,即得本题的概率.
解答:解:到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,
区域D:
表示正方形OABC,(如图)
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的内部,如图中的扇形部分
∵S正方形OABC=22=4,S扇形=
π•22=π
∴所求概率为P=
=
.
故选A.
区域D:
|
其中O为坐标原点,A(2,0),B(2,2),C(0,2).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,
且在扇形OAC的内部,如图中的扇形部分
∵S正方形OABC=22=4,S扇形=
1 |
4 |
∴所求概率为P=
S扇形 |
S正方形OABC |
π |
4 |
故选A.
点评:本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离小于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.
练习册系列答案
相关题目