题目内容
计算求值:
(1)cos
+tan
-sin(
)-sin
(2)sin
+cos(-
)+tan
-cos
.
(1)cos
π |
3 |
3π |
4 |
-5π |
6 |
3π |
2 |
(2)sin
25π |
6 |
15π |
4 |
13π |
3 |
11π |
4 |
分析:利用诱导公式,转化为锐角的三角函数,即可得到结论.
解答:解:(1)原式=cos
+tan(π-
)+sin(π-
)-sin(π+
)
=
-tan
+sin
+sin
=
-1+
+1
=1
(2)原式=sin(4π+
)+cos(
-4π)+tan(
+4π)-cos(3π-
)
=sin
-cos
+tan
+cos
=
-
+
+
=
+
π |
3 |
π |
4 |
π |
6 |
π |
2 |
=
1 |
2 |
π |
4 |
π |
6 |
π |
2 |
=
1 |
2 |
1 |
2 |
=1
(2)原式=sin(4π+
π |
6 |
π |
4 |
π |
3 |
π |
4 |
=sin
π |
6 |
π |
4 |
π |
3 |
π |
4 |
=
1 |
2 |
| ||
2 |
3 |
| ||
2 |
=
1 |
2 |
3 |
点评:本题考查诱导公式的运用,解题的关键是利用诱导公式,转化为锐角的三角函数,属于基础题.
练习册系列答案
相关题目