题目内容

2.已知函数f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x)+$\sqrt{3}$sinxcosx(x∈R).
(1)若f(α)=$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,0),求sin(2α)的值;
(2)在△ABC中,若f($\frac{A}{2}$)=1,求sinB+sinC的取值范围.

分析 (1)由条件利用两角和差的正弦公式求得sin(2x+$\frac{π}{6}$)的值,从而求得 sin(2α)=sin[(2α+$\frac{π}{6}$)-$\frac{π}{6}$]的值.
(2)由条件求得sin(A+$\frac{π}{6}$)=1,可得A=$\frac{π}{3}$.化简sinB+sinC为$\sqrt{3}$sin(B+$\frac{π}{6}$),结合$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,利用正弦函数的定义域和值域,求得sinB+sinC的取值范围.

解答 解:(1)函数f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x)+$\sqrt{3}$sinxcosx=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x+$\frac{π}{6}$),
∵f(α)=sin(2x+$\frac{π}{6}$)=$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,0),∴sin(2x+$\frac{π}{6}$)=$\frac{1}{3}$,
∴sin(2α)=sin[(2α+$\frac{π}{6}$)-$\frac{π}{6}$]=sin(2α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(2α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
(2)△ABC中,若f($\frac{A}{2}$)=1,所以sin(A+$\frac{π}{6}$)=1.
因为0<A<π,所以A+$\frac{π}{6}$=$\frac{π}{2}$,即A=$\frac{π}{3}$.
sinB+sinC=sinB+sin($\frac{2π}{3}$-B)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
因为0<B<$\frac{2π}{3}$,所以$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,
所以$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1,$\frac{\sqrt{3}}{2}$<$\sqrt{3}$sin(B+$\frac{π}{6}$)≤$\sqrt{3}$.
所以sinB+sinC的取值范围为($\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

点评 本题主要考查两角和差的正弦公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网