题目内容
【题目】已知函数f(x)=(m+2cos2x)cos(2x+θ)为奇函数,且f( )=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函数f(x)的图象的对称中心和单调递增区间
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且f( + )=﹣ ,c=1,ab=2 ,求△ABC的周长.
【答案】解:(Ⅰ)f( )=﹣(m+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴m+1=0,即m=﹣1,
∵f(x)为奇函数,
∴f(0)=(m+2)cosθ=0,
∴cosθ=0,θ= .
故f(x)=(﹣1+2cos2x)cos(2x+ )=cos2x(﹣sin2x)=﹣ sin4x,
由4x=kπ,k∈Z得:x= kπ,k∈Z,
故函数f(x)的图象的对称中心坐标为:( kπ,0),k∈Z,
由4x∈[ +2kπ, +2kπ],k∈Z得:x∈[ + kπ, + kπ],k∈Z,
即函数f(x)的单调递增区间为[ + kπ, + kπ],k∈Z,
(Ⅱ)∵f( + )=﹣ sin(2C+ )﹣ ,C为三角形内角,
故C= ,
∴c2=a2+b2﹣2abcosC= = ,
∵c=1,ab=2 span> ,
∴a+b=2+ ,
∴a+b+c=3+ ,
即△ABC的周长为3+
【解析】(Ⅰ)把x=代入函数解析式可求得m的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得函数解析式,进而可得函数f(x)的图象的对称中心和单调递增区间(Ⅱ)由f(+)=﹣可得C角,结合余弦定理及c=1,ab=2,可得△ABC的周长.
【考点精析】解答此题的关键在于理解函数的奇函数的相关知识,掌握一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数,以及对余弦定理的定义的理解,了解余弦定理:;;.