题目内容

若函数y=f(x),x∈D同时满足下列条件:
(1)在D内的单调函数;
(2)存在实数m,n,当定义域为[m,n]时,值域为[m,n].则称此函数为D内可等射函数,设f(x)=
ax+a-3
lna
(a>0且a≠1),则当f (x)为可等射函数时,a的取值范围是______.
求导函数,可得f′(x)=ax>0,故函数为单调增函数
∵存在实数m,n,当定义域为[m,n]时,值域为[m,n].
∴f(m)=m,f(n)=n
∴m,n是方程
ax+a-3
lna
= x
的两个根
构建函数g(x)=
ax+a-3
lna
- x
,则函数g(x)=
ax+a-3
lna
- x
有两个零点,g′(x)=ax-1
①0<a<1时,函数的单调增区间为(-∞,0),单调减区间为(0,+∞)
∵g(0)>0,∴函数有两个零点,故满足题意;
②a>1时,函数的单调减区间为(-∞,0),单调增区间为(0,+∞)
要使函数有两个零点,则g(0)<0,∴
1+a-3
lna
< 0
,∴a<2
∴1<a<2
综上可知,a的取值范围是(0,1)∪(1,2)
故答案为:(0,1)∪(1,2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网