题目内容
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.
(1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个?
(2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.
(1)5;(2)
解析试题分析:(1)根据频率分布直方图各矩形面积和为1可得,分层抽样是按比例抽取,所以根据比值可求得件寿命落在之间的抽取个数。(2)分别求出落在之间和落在之间的元件个数。人后用例举法将寿命落在之间的元件中任取个元件的所有事件一一例举出来,再将“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的事件一一例举,最后根据古典概型概率公式可求其概率。
试题解析:(1)根据题意:
解得 2分
设在寿命落在之间的应抽取个,根据分层抽样有:
4分
解得:
所以寿命落在之间的元件应抽取个 6分
(2)记“恰好有一个寿命落在之间,一个寿命为之间”为事件,易知,寿命落在之间的元件有个,分别记,落在之间的元件有个,分别记为:,从中任取个元件,有如下基本事件:
,,共有个基本事件. 9分
事件 “恰好有一个寿命落在之间,一个寿命为之间”有:
,,共有个基本事件10分
∴ 11分
∴事件“恰好有一个寿命落在之间,一个寿命为之间”的概率为 12分
考点:1频率分布直方图;2古典概型概率公式。
一个车间为了规定工时定额.需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:
零件数x/个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工时间y/分 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
| 积极参加班级工作 | 不太主动参加班级工作 | 合计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 50 |
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求和不全被选中的概率.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组,第3组,第4组,第5组,由统计的数据得到的频率分布直方图如图所示,下表是年龄的频率分布表。
区间 | |||||
人数 | a | b | | |
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率。
某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
| 喜欢 | 不喜欢 | 合计 |
大于40岁 | 20 | 5 | 25 |
20岁至40岁 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5(微克/立方米) | 频数(天) | 频率 |
第一组 | (0,15] | 4 | 0.1 |
第二组 | (15,30] | 12 | 0.3 |
第三组 | (30,45] | 8 | 0.2 |
第四组 | (45,60] | 8 | 0.2 |
第五组 | (60,75] | 4 | 0.1 |
第六组 | (75,90) | 4 | 0.1 |
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X).