题目内容
【题目】已知平面平面ABC,P、P在平面ABC的同侧,二面角的平面角为钝角,Q到平面ABC的距离为,是边长为2的正三角形,,,.
(1)求证:面平面PAB;
(2)求二面角的平面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由正弦定理,可求得,即,再由平面平面ABC,可得平面PAB,可证得面平面PAB;
(2)以A为坐标原点,,方向为x轴、y轴的正方向,建立空间直角坐标系.
求出平面ACQ, 平面PAC的法向量,即可求得二面角.
(1),
所以,
,
又平面平面ABC,平面,
平面ABC,平面PAB,面PAC,
面面PAB
(2)以A为坐标原点,,方向为x轴、y轴的正方向,建立空间直角坐标系.
则,,,,
设平面ACQ的法向量为,则,
令,
设平面PAC的法向量为,则,
令:,
设二面角的平面角为,则.
而此二面角为锐角,故二面角的平面角的余弦值为.
练习册系列答案
相关题目