题目内容
【题目】已知定义域为的函数满足:对任何,都有,且当时,,在下列结论中,正确命题的序号是________
① 对任何,都有;② 函数的值域是;
③ 存在,使得;④ “函数在区间上单调递减”的充要条
件是“存在,使得”;
【答案】①②③④
【解析】
依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;连续利用题中第①②个条件得到②正确;利用题目中的条件求出n的值判断③正确;令3k≤a<b≤3k+1,利用函数单调性的定义判断④正确。
对于①,对任意x∈[0,+∞),恒有f(3x)=3f(x)成立,
当x∈(1,3]时,f(x)=3-x;
所以f(3m)=f(33m-1)=3f(3m-1)=…=3m-1f(3)=0,①正确;
对于②,取x∈(3m,3m+1],
从而函数f(x)的值域为[0,+∞),②正确;
对于③,x∈(1,3]时,f(x)=3-x,
对任意x∈(0,+∞),恒有f(3x)=3f(x)成立,n∈Z,
所以
解得n=2,∴③正确;
对于④,令 则
所以
∴函数f(x)在区间(a,b))(3k,3k+1)上单调递减,④正确;
综上所述,正确结论的序号是①②③④.
故答案为:①②③④.
【题目】已知函数.
(1)完成表一中对应的值,并在坐标系中用描点法作出函数的图象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根据你所作图象判断函数的单调性,并用定义证明;
(3)说明方程的根在区间存在的理由,并从表二中求使方程的根的近似值达到精确度为0.01时运算次数的最小值并求此时方程的根的近似值,且说明理由.
(表二)二分法的结果
运算次数的值 | 左端点 | 右端点 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |