题目内容
17.在棱长为1的正方体ABCD-A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为$\frac{2\sqrt{3}}{3}$,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是①②④(写出所有真命题的序号)
分析 由BD1⊥面AB1C,可得P在面AB1C和面BCC1B1的交线上判断①正确;由平面截球面轨迹是圆判断②正确;利用平面截圆锥侧面可得P点轨迹所在曲线是双曲线的一支,说明③错误;由双曲线定义说明④正确;建立空间坐标系,由|PF|=|PG|列式求出动点P的轨迹说明⑤错误.
解答 解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为$\frac{2\sqrt{3}}{3}$的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;
对于③,满足条件∠MAP=∠MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得$\sqrt{1+{y}^{2}}=|x|$,即x2-y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
点评 本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
练习册系列答案
相关题目
10.已知四面体A-BCD满足下列条件:
(1)有一个面是边长为1的等边三角形;
(2)有两个面是等腰直角三角形.
那么四面体A-BCD的体积的取值集合是( )
(1)有一个面是边长为1的等边三角形;
(2)有两个面是等腰直角三角形.
那么四面体A-BCD的体积的取值集合是( )
A. | $\{\frac{1}{2},\frac{{\sqrt{2}}}{12}\}$ | B. | $\{\frac{1}{6},\frac{{\sqrt{3}}}{12}\}$ | C. | $\{\frac{{\sqrt{2}}}{12},\frac{{\sqrt{3}}}{12},\frac{{\sqrt{2}}}{24}\}$ | D. | $\{\frac{1}{6},\frac{{\sqrt{2}}}{12},\frac{{\sqrt{2}}}{24}\}$ |
5.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( )
A. | BD∥平面CB1D1 | |
B. | AC1⊥B1C | |
C. | AC1⊥平面CB1D1 | |
D. | 直线CC1与平面CB1D1所成的角为45° |
7.已知f(x)是定义在[-4,4]上的奇函数,当x>0时,f(x)=-x2+4x,则不等式f[f(x)]<f(x)的解集为( )
A. | (-3,0)∪(3,4] | B. | (-4,-3)∪(1,2)∪(2,3) | C. | (-1,0)∪(1,2)∪(2,3) | D. | (-4,-3)∪(-1,0)∪(1,3) |