题目内容

已知,不等式的解集为.
(1)求的值;
(2)若对一切实数恒成立,求实数的取值范围.

(1)2;(2).

解析试题分析:(1)我们首先求出不等式的解集,这个解集与相等,由此可求得;(2),一种方法,这个函数是分段函数,我们把它化为一般的分段函数表达式,以便求出它的最大(小)值,从而求得的最大值,得到的取值范围,也可应用绝对值不等式的性质,求得最大值.
试题解析:解法一:(1)由不等式|2x-a|-a≤2,得|2x-a|≤2+a
∵解集不空,∴2+a≥0.
解不等式可得{x∣-1≤x≤1+a}.               3分
∵-1≤x≤3,∴1+a﹦3,即a=2.            5分
(2)记g(x)=f(x)-f(x+2)=|2x-2|-|2x+2|,       6分
4,(x≤-1)
g(x)=-4x,(-1﹤x﹤1).               8分
-4,(x≥1)
所以-4≤g(x)≤4,∴|g(x)|≤4,因此m≥4.     10分
解法二:∵f(x)-f(x+2)=|2x-2|-|2x+2|,
∵|2x-2|-|2x+2|≤|(2x-2)-(2x+2)|=4.     7分
|2x-2|-|2x+2|≥|2x|-2-(|2x|+2)=-4.  9分
∴-4≤|2x-2|-|2x+2|≤4.
∴|f(x)-f(x+2)|≤4.
m≥4.                   10分
考点:(1)解绝对值不等式;(2)分段函数的最值,不等式恒成立问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网