题目内容
【题目】以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,已知曲线 : ,点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求曲线 的极坐标方程和直线 的直角坐标方程;
(2)设 向左平移 个单位长度后得到 , 到 的交点为 , ,求 的长.
【答案】
(1)解: 的直角坐标为 , 的直角坐标方程为 .
因为 在 上,所以 ,
所以 的直角坐标方程为 .
: 化为极坐标方程为 .
(2)解:由已知得 的方程为 ,
所以 的极坐标方程为 ( ),
代入曲线 的极坐标方程 或 ,所以 .
【解析】(1)考察极坐标与直角坐标的相互转化;
(2)考察了平移变换,及极坐标系下直线与曲线相交,交点弦长。应用极径的概念求解。属中档题
【考点精析】认真审题,首先需要了解极坐标系(平面内取一个定点O,叫做极点;自极点O引一条射线OX叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系).
练习册系列答案
相关题目
【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 计算得
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”