题目内容
若在上是减函数,则的取值范围是( )
A. | B. | C. | D. |
C
解析试题分析:因为在上是减函数,所以在恒成立,而,所以在上恒成立即在恒成立,即,因为在单调递增,所以,从而,(对于可采用检验法确定,是否可以取到),故选C.
考点:函数的单调性与导数.
练习册系列答案
相关题目
已知,,,则
A. | B. | C. | D. |
指数函数在R上是增函数,则的取值范围是( )
A. | B. | C. | D. |
如果,那么a、b间的关系是()
A. | B. | C. | D. |
函数(,且)的图像过一个定点,则这个定点坐标是( )
A.(5,1) | B.(1,5) | C.(1,4) | D.(4,1) |
关于x的方程ex-1-|kx|=0(其中e=2.71828…是自然对数的底数)的有三个不同实根,则k的取值范围是
A.{-2,0,2} | B.(1,+∞) | C.{k|k>e} | D.{k|k2>1} |
设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是
A. |
B. |
C. |
D. |
若满足,满足,则( )
A. |
B.3 |
C. |
D.4 |