题目内容

【题目】若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是(
A.1个
B.2个
C.3个
D.5个

【答案】B
【解析】解:依题意:(1)当a=0时,f(x)=x3,在(﹣∞,+∞)上为增函数,有一个单调区间①

当a≠0时,∵f(x)=x3+a|x2﹣1|a∈R

∴f(x)=

∴f′(x)= (2)当0<a< 时,∵﹣ <﹣ <0,0< ,∴导函数的图象如图1:(其中m为图象与x轴交点的横坐标)

∴x∈(﹣∞,0]时,f′(x)>0,x∈(0,m)时,f′(x)<0,x∈[m,+∞)时,f′(x)>0,

∴f(x)在x∈(﹣∞,0]时,单调递增,x∈(0,m)时,单调递减,x∈[m,+∞)时,单调递增,有3个单调区间②(3)当a≥3时,∵﹣ <﹣1, >1,∴导函数的图象如图2:(其中n为x≤﹣1时图象与x轴交点的横坐标)

∴x∈(﹣∞,n]时,f′(x)>0,x∈(n,﹣1]时,f′(x)<0,x∈(﹣1,0)时,f′(x)>0,x∈[0,1)时,f′(x)<0,x∈[1,+∞)时,f′(x)>0

∴函数f(x)在x∈(﹣∞,n]时,单调递增,x∈(n,﹣1]时,单调递减,x∈(﹣1,0)时,单调递增,x∈[0,1)时,单调递减,x∈[1,+∞)时,单调递增,

有5个单调区间③

由①②③排除A、C、D,

故选B

【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网